Mark Scheme (Results)

January 2022

Pearson Edexcel International A Level
In Further Pure Mathematics F3 (WFM03)
Paper 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2022
Question Paper Log Number P71102A
Publications Code WFM03_01_2201_MS
All the material in this publication is copyright
© Pearson Education Ltd 2022

General Marking Guidance

- \quad All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- \quad There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question Number	Scheme Notes	Marks
1(a)	$8 \cosh ^{4} x=8\left(\frac{\mathrm{e}^{x}+\mathrm{e}^{-x}}{2}\right)^{4}=\frac{8}{16}\left(\mathrm{e}^{4 x}+4 \mathrm{e}^{2 x}+6+4 \mathrm{e}^{-2 x}+\mathrm{e}^{-4 x}\right)$ Applies $\cosh x=\frac{\mathrm{e}^{x}+\mathrm{e}^{-x}}{2}$ and attempts to expand the bracket to at least 4 different and no more than 5 different terms of the correct form but they may be "uncollected" depending on how they do the expansion. Allow unsimplified terms e.g. $\left(\mathrm{e}^{x}\right)^{3} \mathrm{e}^{-x}$. May see $8\left(\frac{\mathrm{e}^{x}+\mathrm{e}^{-x}}{2}\right)^{2}\left(\frac{\mathrm{e}^{x}+\mathrm{e}^{-x}}{2}\right)^{2}$ but must attempt to expand as above	M1
	$=\frac{1}{2}\left(\mathrm{e}^{4 x}+\mathrm{e}^{-4 x}\right)+4\left(\frac{\mathrm{e}^{2 x}+\mathrm{e}^{-2 x}}{2}\right)+3=\ldots \quad \begin{aligned} & \text { Collects appropriate terms and reaches the } \\ & \text { form } \cosh 4 x+p \cosh 2 x+q \text { or obtains } \\ & \text { values of } p \text { and } q . \end{aligned}$	M1
	$=\cosh 4 x+4 \cosh 2 x+3 \quad$Correct expression or values e.g. $p=4$ and q $=3$	A1
	No marks are available in (a) if exponentials are not used but note that they may appear in combination with the use of hyperbolic identities e.g.: $\begin{gathered} 8 \cosh ^{4} x=8\left(\cosh ^{2} x\right)^{2}=8\left(\frac{\cosh 2 x+1}{2}\right)^{2}=2\left(\frac{\mathrm{e}^{2 x}+\mathrm{e}^{-2 x}}{2}+1\right)^{2} \\ =2\left(\frac{\mathrm{e}^{4 x}+2+\mathrm{e}^{-4 x}}{4}+\mathrm{e}^{2 x}+\mathrm{e}^{-2 x}+1\right)=\frac{\mathrm{e}^{4 x}+\mathrm{e}^{-4 x}}{2}+4\left(\frac{\mathrm{e}^{2 x}+\mathrm{e}^{-2 x}}{2}\right)+2 \\ =\cosh 4 x+4 \cosh 2 x+3 \end{gathered}$ Allow to "meet in the middle" e.g. expands as above and compares with $\frac{1}{2}\left(\mathrm{e}^{4 x}+\mathrm{e}^{-4 x}\right)+p\left(\frac{\mathrm{e}^{2 x}+\mathrm{e}^{-2 x}}{2}\right)+q \Rightarrow p=\ldots, q=\ldots$ but to score any marks the expansion must be attempted.	
		(3)

(b) Way 1	$\cosh 4 x-17 \cosh 2 x+9=0 \Rightarrow 8 \cosh ^{4} x-4 \cosh 2 x-3-17 \cosh 2 x+9=0$ $\Rightarrow 8 \cosh ^{4} x-21 \cosh 2 x+6=0 \Rightarrow 8 \cosh ^{4} x-21\left(2 \cosh ^{2} x-1\right)+6=0$ Uses their result from part (a) and $\cosh 2 x= \pm 2 \cosh ^{2} x \pm 1$ to obtain a quadratic equation in $\cosh ^{2} x$ or $\cosh 4 x-17 \cosh 2 x+9=0 \Rightarrow 2\left(2 \cosh ^{2} x-1\right)^{2}-1-17\left(2 \cosh ^{2} x-1\right)+9=0$ Uses $\cosh 4 x= \pm 2 \cosh ^{2} 2 x \pm 1$ and $\cosh 2 x= \pm 2 \cosh ^{2} x \pm 1$ to obtain a quadratic equation in $\cosh ^{2} x$	M1
	$\Rightarrow 8 \cosh ^{4} x-42 \cosh ^{2} x+27=0 \quad$ Correct 3TQ in $\cosh ^{2} x$	A1
	$\Rightarrow 8 \cosh ^{4} x-42 \cosh ^{2} x+27=0$ Solves 3TQ in $\cosh ^{2} x$ (apply usual rules if necessary) to obtain $\cosh ^{2} x=k(k \in \mathbb{R}$ and $>1)$. May be implied by their values - check if necessary.	M1
	$\begin{gathered} \cosh ^{2} x=\frac{9}{2} \Rightarrow \cosh x=\frac{3}{\sqrt{2}} \Rightarrow x= \pm \ln \left(\frac{3}{\sqrt{2}}+\sqrt{\frac{9}{2}-1}\right) \\ \cosh x=\frac{3}{\sqrt{2}} \Rightarrow \frac{\mathrm{e}^{x}+\mathrm{e}^{-x}}{2}=\frac{3}{\sqrt{2}} \Rightarrow \sqrt{2} \mathrm{e}^{2 x}-6 \mathrm{e}^{x}+\sqrt{2}=0 \Rightarrow \mathrm{e}^{x}=\ldots \Rightarrow x=\ldots \\ \cosh ^{2} x=\frac{9}{2} \Rightarrow\left(\frac{\mathrm{e}^{x}+\mathrm{e}^{-x}}{2}\right)^{2}=\frac{9}{2} \Rightarrow \mathrm{e}^{4 x}-16 \mathrm{e}^{2 x}+1=0 \Rightarrow \mathrm{e}^{2 x}=\ldots \Rightarrow x=\ldots \end{gathered}$ Takes square root to obtain $\cosh x=k(k>1)$ and applies the correct logarithmic form for arcosh or uses the correct exponential form for $\cosh x$ to obtain at least one value for x The root(s) must be real to score this mark.	M1
	$x= \pm \ln \left(\frac{3 \sqrt{2}}{2}+\frac{\sqrt{14}}{2}\right)$ Both correct and exact including brackets. Accept simplified equivalents e.g. $x=\ln \left(\frac{3}{\sqrt{2}} \pm \frac{\sqrt{7}}{\sqrt{2}}\right)$ but withhold this mark if additional answers are given unless they are the same e.g. allow $x= \pm \ln \left(\frac{3 \sqrt{2}}{2} \pm \frac{\sqrt{14}}{2}\right)$	A1
		(5)

(b)

$$
\cosh 4 x-17 \cosh 2 x+9=0 \Rightarrow 2 \cosh ^{2} 2 x-1-17 \cosh 2 x+9=0
$$

Way 2

| $\cosh 4 x-17 \cosh 2 x+9=0 \Rightarrow 2 \cosh ^{2} 2 x-1-17 \cosh 2 x+9=0$ | |
| :---: | :--- | :--- |
| Applies $\cosh 4 x= \pm 2 \cosh ^{2} 2 x \pm 1$ | to obtain a quadratic equation in $\cosh 2 x$ |$) ~ \mathrm{M} 1$

or
$\cosh 2 x=8 \Rightarrow \frac{\mathrm{e}^{2 x}+\mathrm{e}^{-2 x}}{2}=8 \Rightarrow \mathrm{e}^{4 x}-16 \mathrm{e}^{2 x}+1=0 \Rightarrow \mathrm{e}^{2 x}=\ldots \Rightarrow 2 x=\ldots$
Applies the correct logarithmic form for arcosh from $\cosh 2 x=k(k>1)$ or uses the correct exponential form for $\cosh 2 x$ to obtain at least one value for $2 x$

The root(s) must be real to score this mark.

$$
\begin{gathered}
x= \pm \frac{1}{2} \ln (8+3 \sqrt{7}) \\
\text { or e.g. } \\
x= \pm \ln (8+3 \sqrt{7})^{\frac{1}{2}}
\end{gathered}
$$

Both correct and exact with brackets. Accept simplified equivalents e.g.
$x=\frac{1}{2} \ln (8 \pm \sqrt{63})$ but withhold this mark if additional answers are given unless they are the same as above.
(b)

Way 3

$$
\begin{gathered}
\cosh 4 x-17 \cosh 2 x+9=0 \Rightarrow \frac{\mathrm{e}^{4 x}+\mathrm{e}^{-4 x}}{2}-\frac{17}{2}\left(\mathrm{e}^{2 x}+\mathrm{e}^{-2 x}\right)+9=0 \\
\Rightarrow \mathrm{e}^{8 x}-17 \mathrm{e}^{6 x}+18 \mathrm{e}^{4 x}-17 \mathrm{e}^{2 x}+1=0
\end{gathered}
$$

M1: Applies the correct exponential forms and attempts a quartic equation in $\mathrm{e}^{2 x}$
A1: Correct equation

| $\mathrm{e}^{8 x}-17 \mathrm{e}^{6 x}+18 \mathrm{e}^{4 x}-17 \mathrm{e}^{2 x}+1=0$ |
| :---: | :--- | :--- |
| $\Rightarrow \mathrm{e}^{2 x}=8 \pm 3 \sqrt{7}, \ldots$ |\quad| Solves and proceeds to a value for $\mathrm{e}^{2 x}$ where |
| :--- |
| $\mathrm{e}^{2 x}>1$ and real. | M 1

Question Number	Scheme Notes	Marks
2	$\frac{\mathrm{d} x}{\mathrm{~d} \theta}=\frac{\sec \theta \tan \theta+\sec ^{2} \theta}{\sec \theta+\tan \theta}-\cos \theta$ Correct derivative. Do not condone missing brackets e.g. $\frac{\mathrm{d} x}{\mathrm{~d} \theta}=\frac{1}{\sec \theta+\tan \theta} \times \sec \theta \tan \theta+\sec ^{2} \theta-\cos \theta$ unless a correct expression is implied by subsequent work. Award when a correct expression is seen but note that other forms are possible $\text { e.g. } \sec \theta-\cos \theta, \tan \theta \sin \theta$	B1
	$\begin{gathered} \left(\frac{\mathrm{d} x}{\mathrm{~d} \theta}\right)^{2}+\left(\frac{\mathrm{d} y}{\mathrm{~d} \theta}\right)^{2}=\left(\frac{\sec \theta \tan \theta+\sec ^{2} \theta}{\sec \theta+\tan \theta}-\cos \theta\right)^{2}+(-\sin \theta)^{2} \\ \text { Attempts } \frac{\mathrm{d} y}{\mathrm{~d} \theta} \text { and then }\left(\frac{\mathrm{d} x}{\mathrm{~d} \theta}\right)^{2}+\left(\frac{\mathrm{d} y}{\mathrm{~d} \theta}\right)^{2} \end{gathered}$	M1
	$\begin{gathered} S=(2 \pi) \int \cos \theta \sqrt{\left(\frac{\mathrm{d} x}{\mathrm{~d} \theta}\right)^{2}+\left(\frac{\mathrm{d} y}{\mathrm{~d} \theta}\right)^{2}} \mathrm{~d} \theta \\ =(2 \pi) \int \cos \theta \sqrt{\left(\frac{\sec \theta \tan \theta+\sec ^{2} \theta}{\sec \theta+\tan \theta}-\cos \theta\right)^{2}+(-\sin \theta)^{2}} \mathrm{~d} \theta \end{gathered}$ Applies a correct surface area formula using their $\frac{\mathrm{d} x}{\mathrm{~d} \theta}$ and their $\frac{\mathrm{d} y}{\mathrm{~d} \theta}$ with or without the 2π For reference: $\sqrt{\left(\frac{\sec \theta \tan \theta+\sec ^{2} \theta}{\sec \theta+\tan \theta}-\cos \theta\right)^{2}+(-\sin \theta)^{2}}=\tan \theta$ Allow π in front of the integral but must be an integral	M1
	$(2 \pi) \int \sin \theta \mathrm{d} \theta$ Fully correct simplified integral with or without the 2π	A1
	$=(2 \pi)[-\cos \theta](+c) \quad$ Correct integration with or without the 2π	A1
	$(2 \pi)[-\cos \theta]_{0}^{\frac{\pi}{4}}=(2 \pi)\left(-\frac{1}{\sqrt{2}}+1\right)$ Applies the limits 0 and $\frac{\pi}{4}$. Must see evidence of both limits if necessary but condone e.g. $(2 \pi)\left(-\frac{1}{\sqrt{2}}-1\right)$ Depends on both previous method marks.	dM1
	$\begin{array}{c\|l} \hline \text { TSA }= & \begin{array}{l} \text { Correct expressions for the } 2 \text { "ends" and adds } \\ \text { these to their curved surface area. Depends on } \\ \text { the previous method mark. } \end{array} \\ \hline \end{array}$	dM1
	$=\frac{\pi}{2}(7-2 \sqrt{2}) \quad$Correct answer in the required form or correct values for p and q.	A1
	Note: The final answer should follow correct work. The final mark should be withheld following e.g. $\frac{\mathrm{d} y}{\mathrm{~d} \theta}$ clearly seen as $+\sin \boldsymbol{\theta}$ or $\int \sin \theta \mathrm{d} \theta=+\cos \theta$ Note: Without the "ends" the answer is $\frac{\pi}{2}(4-2 \sqrt{2})$ (usually scores 6/8)	
		(8)
		Total 8

Alternative for first 4 marks:

$$
\frac{\mathrm{d} x}{\mathrm{~d} \theta}=\frac{\sec \theta \tan \theta+\sec ^{2} \theta}{\sec \theta+\tan \theta}-\cos \theta
$$

Do not condone missing brackets e.g. $\frac{\mathrm{d} x}{\mathrm{~d} \theta}=\frac{1}{\sec \theta+\tan \theta} \times \sec \theta \tan \theta+\sec ^{2} \theta-\cos \theta$
unless a correct expression is implied by subsequent work. Award when a correct expression is seen but note that other forms are possible

$$
\text { e.g. } \sec \theta-\cos \theta, \tan \theta \sin \theta
$$

$$
1+\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^{2}=1+\left(\frac{-\sin \theta}{\sec \theta-\cos \theta}\right)^{2}
$$

Attempts $1+\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^{2}$ with $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y}{\mathrm{~d} \theta} \times \frac{\mathrm{d} \theta}{\mathrm{d} x}$

$$
S=(2 \pi) \int \cos \theta \sqrt{1+\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^{2}} \frac{\mathrm{~d} x}{\mathrm{~d} \theta} \mathrm{~d} \theta
$$

$$
=(2 \pi) \int \cos \theta \sqrt{1+\left(\frac{-\sin \theta}{\sec \theta-\cos \theta}\right)^{2}}(\sec \theta-\cos \theta) \mathrm{d} \theta
$$

Applies a correct surface area formula using their $\frac{\mathrm{d} x}{\mathrm{~d} \theta}$ and their $\frac{\mathrm{d} y}{\mathrm{~d} x}$ with or without the 2π
For reference: $\sqrt{1+\left(\frac{-\sin \theta}{\sec \theta-\cos \theta}\right)^{2}}(\sec \theta-\cos \theta)=\tan \theta$
Allow π in front of the integral but must be an integral
$(2 \pi) \int \sin \theta \mathrm{d} \theta$
Fully correct simplified integral with or without the 2π

Question Number	Scheme Notes	Marks
3(a)	$y=\operatorname{arsech}\left(\frac{x}{2}\right) \Rightarrow \operatorname{sech} y=\frac{x}{2}$ Takes "sech" of both sides and differentiates $\Rightarrow \frac{\mathrm{d} x}{\mathrm{~d} y}=-2 \operatorname{sech} y \tanh y$ to obtain $\frac{\mathrm{d} x}{\mathrm{~d} y}=k \operatorname{sech} y \tanh y$ or equivalent.	M1
	$\Rightarrow \frac{\mathrm{d} x}{\mathrm{~d} y}=-2\left(\frac{x}{2}\right) \sqrt{1-\left(\frac{x}{2}\right)^{2}}$ M1: Replaces sech y with $\frac{x}{2}$ and $\tanh y$ with $\sqrt{1-\left(\frac{x}{2}\right)^{2}}$ A1: Correct equation involving $\frac{\mathrm{d} x}{\mathrm{~d} y}$ or $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in any form in terms of x only.	M1A1
	$\Rightarrow \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{-2}{x \sqrt{4-x^{2}}} \quad \begin{aligned} & \text { Correct derivative in the required form or } \\ & \text { correct values for } p \text { and } q . \end{aligned}$	A1
		(4)
$\begin{gathered} \text { (a) } \\ \text { Way } 2 \end{gathered}$	$y=\operatorname{arsech}\left(\frac{x}{2}\right) \Rightarrow \operatorname{sech} y=\frac{x}{2}$ Takes "sech" of both sides, changes to "cosh" and differentiates to obtain $\Rightarrow \cosh y=\frac{2}{x} \Rightarrow \sinh y \frac{\mathrm{~d} y}{\mathrm{~d} x}=-\frac{2}{x^{2}}$ $\sinh y \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{k}{x^{2}}$ or equivalent.	M1
	$\begin{aligned} & \Rightarrow \frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{2}{x^{2} \sinh y}=-\frac{2}{x^{2} \sqrt{\left(\frac{2}{x}\right)^{2}-1}} \\ & \text { M1: Replaces sinh } y \text { with } \sqrt{\left(\frac{2}{x}\right)^{2}-1} \end{aligned}$ A1: Correct equation involving $\frac{\mathrm{d} x}{\mathrm{~d} y}$ or $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in any form in terms of x only.	M1A1
	$\Rightarrow \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{-2}{x \sqrt{4-x^{2}}} \quad \begin{aligned} & \text { Correct derivative in the required form or } \\ & \text { correct values for } p \text { and } q . \end{aligned}$	A1
$\begin{gathered} \text { (a) } \\ \text { Way } 3 \end{gathered}$	$y=\operatorname{arsech}\left(\frac{x}{2}\right) \Rightarrow y=\operatorname{arcosh}\left(\frac{2}{x}\right)$ Changes to "arcosh" correctly. Score this as the second M mark on EPEN.	M1
	$\Rightarrow \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{\sqrt{\left(\frac{2}{x}\right)^{2}-1}} \times-\frac{2}{x^{2}}$ M1: Differentiates to the form $\frac{k}{x^{2} \sqrt{\left(\frac{2}{x}\right)^{2}-1}}$ oe A1: Correct equation involving $\frac{\mathrm{d} x}{\mathrm{~d} y}$ or $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in any form in terms of x only. Score this as the first M mark and first A mark on EPEN.	M1A1
	$\Rightarrow \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{-2}{x \sqrt{4-x^{2}}} \quad \begin{aligned} & \text { Correct derivative in the required form or } \\ & \text { correct values for } p \text { and } q . \end{aligned}$	A1

(a)
$y=\operatorname{arsech}\left(\frac{x}{2}\right) \Rightarrow \operatorname{sech} y=\frac{x}{2} \Rightarrow\left(\frac{x}{2}\right)^{2}=\operatorname{sech}^{2} y \Rightarrow \tanh y=\sqrt{1-\left(\frac{x}{2}\right)^{2}}$

Way 4

$$
\begin{gathered}
\Rightarrow \operatorname{sech}^{2} y \frac{\mathrm{~d} y}{\mathrm{~d} x}=-x\left(1-\frac{x^{2}}{4}\right)^{-\frac{1}{2}} \\
\Rightarrow \operatorname{sech}^{2} y \frac{\mathrm{~d} y}{\mathrm{~d} x}=-x\left(1-\frac{x^{2}}{4}\right)^{-\frac{1}{2}} \Rightarrow \frac{x^{2}}{4} \frac{\mathrm{~d} y}{\mathrm{~d} x}=-x\left(1-\frac{x^{2}}{4}\right)^{-\frac{1}{2}} \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=-\frac{4}{x}\left(1-\frac{x^{2}}{4}\right)^{-\frac{1}{2}} \\
\text { Differentiates to } \operatorname{sech}^{2} y \frac{\mathrm{~d} y}{\mathrm{~d} x}=k x\left(1-\frac{x^{2}}{4}\right)^{-\frac{1}{2}} \text { or equivalent } \\
\text { M1: Replaces } \operatorname{sech}^{2} y \text { with }\left(\frac{2}{x}\right)^{2}
\end{gathered}
$$

A1: Correct equation involving $\frac{\mathrm{d} x}{\mathrm{~d} y}$ or $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in any form in terms of x only.

$$
\Rightarrow \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{-2}{x \sqrt{4-x^{2}}}
$$

Correct derivative in the required form or correct values for p and q.

$$
y=\operatorname{arsech}\left(\frac{x}{2}\right) \Rightarrow \operatorname{sech} y=\frac{x}{2} \Rightarrow y=\operatorname{artanh}\left(\sqrt{1-\left(\frac{x}{2}\right)^{2}}\right)
$$

Changes to "artanh" correctly. Score this as the second M mark on EPEN.

$$
\Rightarrow \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\frac{1}{2}\left(1-\frac{x^{2}}{4}\right)^{-\frac{1}{2}}}{1-\left(1-\frac{x^{2}}{4}\right)} \times-\frac{x}{2}
$$

M1: Differentiates to the form $\frac{k x\left(1-\frac{x^{2}}{4}\right)^{-\frac{1}{2}}}{1-\left(1-\frac{x^{2}}{4}\right)}$ oe
A1: Correct equation involving $\frac{\mathrm{d} x}{\mathrm{~d} y}$ or $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in any form in terms of x only.

Score this as the first M mark and first A mark on EPEN.

$$
\Rightarrow \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{-2}{x \sqrt{4-x^{2}}}
$$

Correct derivative in the required form or correct values for p and q.

(b)	$\mathrm{f}(x)=\tanh ^{-1}(x)+\operatorname{sech}^{-1}\left(\frac{x}{2}\right) \Rightarrow \mathrm{f}^{\prime}(x)=\frac{1}{1-x^{2}}-\frac{2}{x \sqrt{4-x^{2}}}$ Correct $\mathrm{f}^{\prime}(x)$ following through their (a) of the form $\frac{p}{x \sqrt{q-x^{2}}}$ Also allow with "made up" p and q or the letters p and q.		B1ft
	$\begin{gathered} \frac{1}{1-x^{2}}-\frac{2}{x \sqrt{4-x^{2}}}=0 \Rightarrow 2\left(1-x^{2}\right)=x \sqrt{4-x^{2}} \Rightarrow 4\left(1-x^{2}\right)^{2}=x^{2}\left(4-x^{2}\right) \\ \text { Sets } \frac{\mathrm{d} y}{\mathrm{~d} x}=0 \text { with their (a) of the form } \frac{p}{x \sqrt{q-x^{2}}} \end{gathered}$and squares both sides to reach a quartic equation		M1
	$5 x^{4}-12 x^{2}+4=0$	Correct quartic	A1
	$5 x^{4}-12 x^{2}+4=0 \Rightarrow x^{2}=2,0.4$ $\Rightarrow x=\ldots$	Solves their quartic equation to obtain a value for x^{2} and proceeds to a value for x. Apply usual rules for solving and check if necessary. Allow complex roots.	M1
	$x=\sqrt{\frac{2}{5}}$	Correct exact answer (allow equivalents e.g. $\frac{\sqrt{10}}{5}$). If any extra answers given score A0 e.g. $x= \pm \sqrt{\frac{2}{5}}$	A1
			(5)
			Total 9

Special case:

It is possible for a correct solution in (b) following a sign error in (a) e.g.

$$
\begin{gathered}
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2}{x \sqrt{4-x^{2}}} \\
\mathrm{f}(x)=\tanh ^{-1}(x)+\operatorname{sech}^{-1}\left(\frac{x}{2}\right) \Rightarrow \mathrm{f}^{\prime}(x)=\frac{1}{1-x^{2}}+\frac{2}{x \sqrt{4-x^{2}}} \\
\frac{1}{1-x^{2}}+\frac{2}{x \sqrt{4-x^{2}}}=0 \Rightarrow 2\left(1-x^{2}\right)=-x \sqrt{4-x^{2}} \Rightarrow 4\left(1-x^{2}\right)^{2}=x^{2}\left(4-x^{2}\right) \text { etc. }
\end{gathered}
$$

This is likely to score M1M1A0A0 in (a) but allow full recovery in (b) if it leads to the correct answer.

Question Number	Scheme Notes	Marks
4(a)	$\begin{gathered} \lambda=3 \Rightarrow\|\mathbf{M}-3 \mathbf{I}\|=\left\|\begin{array}{lll} 3 & k & 2 \\ k & 2 & 0 \\ 2 & 0 & 4 \end{array}\right\|=0 \Rightarrow 3(8)-k(4 k)+2(-4)=0 \\ \|\mathbf{M}-\lambda \mathbf{I}\|=\left\|\begin{array}{ccc} 6-\lambda & k & 2 \\ k & 5-\lambda & 0 \\ 2 & 0 & 7-\lambda \end{array}\right\|=0 \\ \Rightarrow(6-\lambda)(5-\lambda)(7-\lambda)-k(k(7-\lambda))+2(0-2(5-\lambda))=0 \Rightarrow 24-k(4 k)-8=0 \end{gathered}$ Correct interpretation of 3 being an eigenvalue leading to the formation of a quadratic equation in k only. If the method for forming the determinant is not clear then look for at least 2 correct "components". NB rule of Sarrus gives $24-8-4 k^{2}=0$	M1
	$\Rightarrow 4 k^{2}=16 \Rightarrow k=\ldots \quad$Solves quadratic. Depends on the first M.	dM1
	$k= \pm 2$ Correct values	A1
		(3)
$\begin{gathered} \text { (a) } \\ \text { Way } 2 \end{gathered}$	$\begin{gathered} \left(\begin{array}{lll} 6 & k & 2 \\ k & 5 & 0 \\ 2 & 0 & 7 \end{array}\right)\left(\begin{array}{l} x \\ y \\ z \end{array}\right)=3\left(\begin{array}{l} x \\ y \\ z \end{array}\right) \Rightarrow \begin{array}{l} 6 x+k y+2 z=3 x \\ k x+5 y=3 y \\ 2 x+7 z=3 z \end{array} \\ z=-\frac{1}{2} x, y=-\frac{1}{2} k x \Rightarrow 6 x-\frac{k^{2} x}{2}-x=3 x \Rightarrow \frac{k^{2}}{2}=2 \end{gathered}$ Eliminates z and y and reaches a quadratic equation in k only	M1
	$\frac{k^{2}}{2}=2 \Rightarrow k=\ldots \quad$Solves quadratic. Depends on the first \mathbf{M}.	dM1
	$k= \pm 2$ Correct values	A1
(b)	$\begin{gathered} k=-2 \Rightarrow\|\mathbf{M}-\lambda \mathbf{I}\|=\left\|\begin{array}{ccc} 6-\lambda & -2 & 2 \\ -2 & 5-\lambda & 0 \\ 2 & 0 & 7-\lambda \end{array}\right\| \\ \Rightarrow(6-\lambda)(7-\lambda)(5-\lambda)+2(2 \lambda-14)+2(2 \lambda-10)=0 \end{gathered}$ Applies a value of k from (a) and a recognisable attempt at the characteristic equation (the "= 0 " is not needed here). If the method is not clear then look for at least 2 correct "components".	M1
	$\Rightarrow \lambda^{3}-18 \lambda^{2}+99 \lambda-162=0 \Rightarrow \lambda=\ldots \quad \begin{aligned} & \text { Solves cubic. May use } \lambda=3 \text { as a factor or } \\ & \text { calculator to solve. Depends on the first } \\ & \text { mark. Allow complex roots. } \end{aligned}$	dM1
	$\lambda=6,9(, 3) \quad$Correct values. Allow to come from $k=2$	A1
		(3)

(c)	$\left.\begin{array}{l} \left(\begin{array}{rrr} 6 & -2 & 2 \\ -2 & 5 & 0 \\ 2 & 0 & 7 \end{array}\right)\left(\begin{array}{l} x \\ y \\ z \end{array}\right)=3\left(\begin{array}{l} x \\ y \\ z \end{array}\right) \Rightarrow \begin{array}{l} 6 x-2 y+2 z=3 x \\ -2 x+5 y=3 y \\ 2 x+7 z=3 z \end{array} \\ \left(\begin{array}{rrr} 3 & -2 & 2 \\ -2 & 2 & 0 \\ 2 & 0 & 4 \end{array}\right)\left(\begin{array}{l} x \\ y \\ z \end{array}\right)=\left(\begin{array}{l} x \\ y \\ z \end{array}\right)=\ldots \\ 0 \\ 0 \end{array}\right) \begin{aligned} & 6 x-2 y+2 z=0 \\ & -2 x+5 y=0 \\ & 2 x+7 z=0 \end{aligned} \quad \Rightarrow\left(\begin{array}{l} x \\ y \\ z \end{array}\right)=\ldots .$ Correct strategy for finding the eigenvector using a value of k from (a) Note that the cross product of any 2 rows or columns of $\mathbf{M}-3 \mathbf{I}$ gives an eigenvector		M1
	$p\left(\begin{array}{r}2 \\ 2 \\ -1\end{array}\right)$	Any correct eigenvector	A1
	$\frac{1}{3}\left(\begin{array}{r}2 \\ 2 \\ -1\end{array}\right)$	Any correct normalised eigenvector	A1
			(3)
			Total 9

Question Number	Scheme Notes	Marks
5(i)	$x^{2}-3 x+5=\left(x-\frac{3}{2}\right)^{2}+\frac{11}{4} \quad$ Correct completion of the square	B1
	$\int \frac{1}{\sqrt{x^{2}-3 x+5}} \mathrm{~d} x=\int \frac{1}{\sqrt{\left(x-\frac{3}{2}\right)^{2}+\frac{11}{4}}} \mathrm{~d} x=\sinh ^{-1} \frac{2 x-3}{\sqrt{11}}(+c)$ M1: Use of $\sinh ^{-1}$ A1: Fully correct expression (condone omission of $+c$) Allow equivalent correct expressions e.g. $\sinh ^{-1} \frac{x-\frac{3}{2}}{\sqrt{\frac{11}{4}}}(+c), \sinh ^{-1} \frac{x-\frac{3}{2}}{\frac{\sqrt{11}}{2}}(+c)$ Allow equivalents for $\sinh ^{-1}$ e.g. arsinh, arcsinh but not arsin or arcsin	M1A1
	You may see logarithmic forms for the answer: e.g. $\ln \left(\frac{2 x-3}{\sqrt{11}}+\sqrt{\left(\frac{2 x-3}{\sqrt{11}}\right)^{2}+1}\right), \ln \left(x-\frac{3}{2}+\sqrt{\left(x-\frac{3}{2}\right)^{2}+\frac{11}{4}}\right)$ but apply isw once a correct answer is seen.	
		(3)
(ii)	$\begin{aligned} 63+4 x-4 x^{2}=-4\left(x^{2}-x-\frac{63}{4}\right) & \text { Obtains }-4\left(\left(x-\frac{1}{2}\right)^{2} \pm \ldots\right) \text { or } \\ =-4\left(\left(x-\frac{1}{2}\right)^{2}-\frac{64}{4}\right) & -4\left(x-\frac{1}{2}\right)^{2} \pm \ldots \text { or } \ldots-(2 x-1)^{2} \end{aligned}$	M1
	$\begin{array}{c\|c} -4\left(\left(x-\frac{1}{2}\right)^{2}-16\right) \text { or } 64-4\left(x-\frac{1}{2}\right)^{2} \\ \text { or } \\ 64-(2 x-1)^{2} \end{array} \quad \text { Correct completion of the square }$	A1
	$\int \frac{1}{\sqrt{63+4 x-4 x^{2}}} \mathrm{~d} x=\frac{1}{2} \sin ^{-1}\left(\frac{2 x-1}{8}\right)(+c)$ M1: Use of $\sin ^{-1}$ A1: Fully correct expression (condone omission of $+c$) Allow equivalent correct expressions e.g. $\frac{1}{2} \sin ^{-1} \frac{x-\frac{1}{2}}{4}(+c),-\frac{1}{2} \sin ^{-1} \frac{\frac{1}{2}-x}{4}(+c)$ Allow equivalents for $\sin ^{-1}$ e.g. arsin, arcsin but not arsinh or arcsinh	M1A1
		(4)
	$\text { In (ii) there are no marks for using } \int \frac{1}{\sqrt{63+4 x-4 x^{2}}} \mathrm{~d} x=-\int \frac{1}{\sqrt{4 x^{2}-63-4 x}} \mathrm{~d} x$ But if completion of square attempted first allow M1A1 e.g. for $\int \frac{1}{\sqrt{63+4 x-4 x^{2}}} \mathrm{~d} x=\int \frac{1}{\sqrt{64-(2 x-1)^{2}}} \mathrm{~d} x \text { but then M0 for }=\int \frac{-1}{\sqrt{(2 x-1)^{2}-64}} \mathrm{~d} x$	
		Total 7

Question Number	Scheme Notes	Marks
6(a)	$\int \mathrm{e}^{x} \sin ^{n} x \mathrm{~d} x=\mathrm{e}^{x} \sin ^{n} x-n \int \mathrm{e}^{x} \sin ^{n-1} x \cos x \mathrm{~d} x$ Applies integration by parts to obtain $\pm \mathrm{e}^{x} \sin ^{n} x \pm \alpha \int \mathrm{e}^{x} \sin ^{n-1} x \cos x \mathrm{~d} x$	M1
	$=\mathrm{e}^{x} \sin ^{n} x-n\left\{\mathrm{e}^{x} \sin ^{n-1} x \cos x-\int \mathrm{e}^{x}\left((n-1) \sin ^{n-2} x \cos ^{2} x-\sin ^{n} x\right) \mathrm{d} x\right\}$ M1: Applies integration by parts to $\pm \alpha \int \mathrm{e}^{x} \sin ^{n-1} x \cos x \mathrm{~d} x$ to obtain $\pm \mathrm{e}^{x} \sin ^{n-1} x \cos x \pm \int \mathrm{e}^{x}\left(\alpha \sin ^{n-2} x \cos ^{2} x-\beta \sin ^{n} x\right) \mathrm{d} x$ Or equivalent e.g. $\pm \mathrm{e}^{x} \sin ^{n-1} x \cos x \pm \int \mathrm{e}^{x}\left(\alpha \sin ^{n-2} x-\beta \sin ^{n} x\right) \mathrm{d} x$ (if Pythagoras applied first) A1: Fully correct expression for I_{n} from parts applied twice.	dM1A1
	$\begin{gathered} =\mathrm{e}^{x} \sin ^{n} x-n\left\{\mathrm{e}^{x} \sin ^{n-1} x \cos x-\int \mathrm{e}^{x}\left((n-1) \sin ^{n-2} x\left(1-\sin ^{2} x\right)-\sin ^{n} x\right) \mathrm{d} x\right\} \\ \text { Applies } \cos ^{2} x=1-\sin ^{2} x \end{gathered}$	dM1
	$\begin{gathered} =\mathrm{e}^{x} \sin ^{n} x-n\left\{\mathrm{e}^{x} \sin ^{n-1} x \cos x-\int \mathrm{e}^{x}\left((n-1) \sin ^{n-2} x-(n-1) \sin ^{n} x-\sin ^{n} x\right) \mathrm{d} x\right\} \\ =\mathrm{e}^{x} \sin ^{n} x-n\left\{\mathrm{e}^{x} \sin ^{n-1} x \cos x-\int \mathrm{e}^{x}\left((n-1) \sin ^{n-2} x-n \sin ^{n} x\right) \mathrm{d} x\right\} \\ =\mathrm{e}^{x} \sin ^{n} x-n \mathrm{e}^{x} \sin ^{n-1} x \cos x+n(n-1) I_{n-2}-n^{2} I_{n} \Rightarrow I_{n}=\ldots \end{gathered}$ Completes by introducing I_{n-2} and I_{n} and makes I_{n} the subject	dM1
	$I_{n}=\frac{\mathrm{e}^{x} \sin ^{n-1} x}{n^{2}+1}(\sin x-n \cos x)+\frac{n(n-1)}{n^{2}+1} I_{n-2} *$ Fully correct proof with no errors but allow e.g. the occasional missing "dx" but any clear errors must be recovered before final answer e.g. missing brackets.	A1*
		(6)

(b)	$\begin{aligned} & I_{4}=\frac{\mathrm{e}^{x} \sin ^{3} x}{17}(\sin x-4 \cos x)+\frac{12}{17} I_{2} \\ & \text { or } \\ & I_{2}=\frac{\mathrm{e}^{x} \sin x}{5}(\sin x-2 \cos x)+\frac{2}{5} I_{0} \end{aligned}$ Applies the reduction formula once	M1
	$\begin{aligned} & =\frac{\mathrm{e}^{x} \sin ^{3} x}{17}(\sin x-4 \cos x)+\frac{12}{17}\left(\frac{\mathrm{e}^{x} \sin x}{5}(\sin x-2 \cos x)+\frac{2}{5} I_{0}\right) \\ & =\frac{\mathrm{e}^{x} \sin ^{3} x}{17}(\sin x-4 \cos x)+\frac{12 \mathrm{e}^{x} \sin x}{85}(\sin x-2 \cos x)+\frac{24}{85} \mathrm{e}^{x} \end{aligned}$ Applies the reduction formula again and uses $I_{0}=\int \mathrm{e}^{x} \mathrm{~d} x=\mathrm{e}^{x}$ to obtain an expression in terms of x	M1
	$\begin{gathered} \int_{0}^{\frac{\pi}{2}} \mathrm{e}^{x} \sin ^{4} x \mathrm{~d} x=\left[\frac{\mathrm{e}^{x} \sin ^{3} x}{17}(\sin x-4 \cos x)+\frac{12 \mathrm{e}^{x} \sin x}{85}(\sin x-2 \cos x)+\frac{24}{85} \mathrm{e}^{x}\right]_{0}^{\frac{\pi}{2}} \\ = \\ \frac{\mathrm{e}^{\frac{\pi}{2}}}{17}+\frac{12 \mathrm{e}^{\frac{\pi}{2}}}{85}+\frac{24 \mathrm{e}^{\frac{\pi}{2}}}{85}-\frac{24}{85} \end{gathered}$ Uses the limits 0 and $\frac{\pi}{2}$ and subtracts. Depends on both previous marks.	dM1
	$=\frac{41 \mathrm{e}^{\frac{\pi}{2}}}{85}-\frac{24}{85}$ Correct expression or correct values e.g. $A=\ldots, B=\ldots$	A1
		(4)
	Note that the limits may be applied as they go e.g.: $\begin{gathered} \text { M1: } I_{4}=\frac{\mathrm{e}^{\frac{\pi}{2}}}{17}(1-0)+\frac{12}{17} I_{2} \\ I_{2}=\frac{\mathrm{e}^{\frac{\pi}{2}}}{5}(1-0)+\frac{2}{5} I_{0} \\ I_{0}=\mathrm{e}^{\frac{\pi}{2}}-1 \\ \text { M1M1: } I_{4}=\frac{\mathrm{e}^{\frac{\pi}{2}}}{17}+\frac{12}{17}\left(\frac{\mathrm{e}^{\frac{\pi}{2}}}{5}+\frac{2}{5}\left(\mathrm{e}^{\frac{\pi}{2}}-1\right)\right) \\ \text { A1: }=\frac{41 \mathrm{e}^{\frac{\pi}{2}}}{85}-\frac{24}{85} \end{gathered}$	
		Total 10

Question Number	Scheme	Notes	Marks
7(a)	$\frac{x-3}{4}=\frac{y-5}{-2}=\frac{z-4}{7} \Rightarrow \mathbf{r}=\left(\begin{array}{l}3 \\ 5 \\ 4\end{array}\right) \pm \lambda\left(\begin{array}{r}4 \\ -2 \\ 7\end{array}\right)$	Converts to parametric form. " $\mathbf{r}=$ " is not required	M1
	$\begin{gathered} 2 x+4 y-z=1 \\ \Rightarrow 2(3+4 \lambda)+4(5-2 \lambda)-4-7 \lambda=1 \\ \Rightarrow \lambda=\ldots(3) \Rightarrow P \text { is } \ldots \end{gathered}$	Correct strategy for finding P. Condone the use of $2 x+4 y-z=0$ for the plane equation.	M1
	$(15,-1,25)$	Correct coordinates. Condone if given as a vector.	A1
			(3)
(a) Way 2	$\frac{x-3}{4}=\frac{y-5}{-2} \Rightarrow x=13-2 y$	Uses the Cartesian equation to find x in terms of y	M1
	$\begin{gathered} 2 x+4 y-z=1 \Rightarrow 26-4 y+4 y-z=1 \\ \Rightarrow z=\ldots, x=\ldots, y=\ldots \end{gathered}$	Correct strategy for finding P. Condone the use of $2 x+4 y-z=0$ for the plane equation.	M1
	$(15,-1,25)$	Correct coordinates. Condone if given as a vector.	A1
(b)	$\left(\begin{array}{r}4 \\ -2 \\ 7\end{array}\right) \cdot\left(\begin{array}{r}2 \\ 4 \\ -1\end{array}\right)=8-8-7=-7$	Applies the scalar product between the direction of l_{1} and the normal to the plane	M1
	$\phi=\cos ^{-1} \frac{ \pm 7}{\sqrt{69} \sqrt{21}}=\ldots$ Attempts to find a relevant Depends on the fir	$\sin ^{-1} \frac{ \pm 7}{\sqrt{69} \sqrt{21}}=\ldots$ in degrees or radians. ethod mark.	dM1
	$\theta=10.6^{\circ}$	Allow awrt 10.6 but do not isw and mark the final answer. For reference $\theta=10.5965654^{\circ}$	A1
			(3)
(b) Way 2	$\left(\begin{array}{r}4 \\ -2 \\ 7\end{array}\right) \times\left(\begin{array}{r}2 \\ 4 \\ -1\end{array}\right)=\left(\begin{array}{r}26 \\ -18 \\ -20\end{array}\right)$	Attempts vector product of normal to Π and direction of l_{1}	M1
	$\begin{gathered} \sqrt{26^{2}+18^{2}+20^{2}}=\sqrt{21} \sqrt{69} \sin \alpha \\ \sin \alpha=\frac{10 \sqrt{46}}{69} \Rightarrow \alpha=\ldots \end{gathered}$	Attempts to find a relevant angle. Depends on the first method mark.	dM1
	$\theta=10.6{ }^{\circ}$	Allow awrt 10.6 but do not isw and mark the final answer. For reference $\theta=10.5965654^{\circ}$	A1

Question Number	Scheme	Notes	Marks
8(a)	$\begin{gathered} b^{2}=a^{2}\left(1-e^{2}\right) \Rightarrow 4=9\left(1-e^{2}\right) \Rightarrow e=\ldots \\ \text { or e.g. } \\ e=\sqrt{1-\frac{b^{2}}{a^{2}}} \Rightarrow e=\ldots \end{gathered}$	Uses a correct formula with a and b correctly placed to find a value for e	M1
	$e=\frac{\sqrt{5}}{3}$	Correct value (or equivalent) $e= \pm \frac{\sqrt{5}}{3}$ scores A0	A1
			(2)
(b)(i)	$(\pm a e, 0)=(\pm \sqrt{5}, 0) \text { or }\left(\pm 3 \frac{\sqrt{5}}{3}, 0\right)$ Correct foci. Must be coordinates but allow unsimplified and isw if necessary. Follow through their e so allow for $(\pm 3 \times$ their $e, 0)$		B1ft
(ii)	$x= \pm \frac{a}{e}= \pm \frac{9}{\sqrt{5}} \text { or } x= \pm \frac{3}{\frac{\sqrt{5}}{3}}$ Correct directrices. Must be equations but allow unsimplified and isw if necessary. Follow through their e so allow for $x= \pm 3 /$ their e		B1ft
			(2)
	Special case: Use of a^{2} for a and b^{2} for b consistently scores M0A0 in (a) and B1ft B1ft in (b) This gives $e=\frac{\sqrt{65}}{9}, \quad(\pm \sqrt{65}, 0), \quad x= \pm \frac{81}{\sqrt{65}}$		
(c)	$\begin{gathered} \frac{\mathrm{d} x}{\mathrm{~d} \theta}=-3 \sin \theta, \frac{\mathrm{~d} y}{\mathrm{~d} \theta}=2 \cos \theta \\ \text { or } \\ \frac{2 x}{9}+\frac{2 y}{4} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \end{gathered}$ or $\begin{gathered} y=\left(4-\frac{4 x^{2}}{9}\right)^{\frac{1}{2}} \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=-\frac{4 x}{9}\left(4-\frac{4 x^{2}}{9}\right)^{-\frac{1}{2}} \\ \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=\ldots\left(=\frac{2 \cos \theta}{-3 \sin \theta}\right) \end{gathered}$	Correct strategy for the gradient of l in terms of θ. Allow $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2 \cos \theta}{-3 \sin \theta}$ to be stated.	M1
	$y-2 \sin \theta=\frac{2 \cos \theta}{-3 \sin \theta}(x-3 \cos \theta)$	Correct straight line method (any complete method). Finding the equation of the normal is M0.	M1
	$\begin{gathered} -3 y \sin \theta+6 \sin ^{2} \theta=2 x \cos \theta-6 \cos ^{2} \theta \\ 2 x \cos \theta+3 y \sin \theta=6^{*} \end{gathered}$	Cso with at least one intermediate line of working	A1*
			(3)

(d)	$l_{2}: y=\frac{3 \sin \theta}{2 \cos \theta} x$	Correct equation for l_{2}	B1
	$2 x \cos \theta+3 y \sin \theta=6, y=\frac{3 \sin \theta}{2 \cos \theta} x$ $\Rightarrow x=\ldots, y=\ldots$	Complete method for Q	M1
	$Q:\left(\frac{12 \cos \theta}{4 \cos ^{2} \theta+9 \sin ^{2} \theta}, \frac{18 \sin \theta}{4 \cos ^{2} \theta+9 \sin ^{2} \theta}\right)$		
Correct coordinates. Allow as $x=\ldots, y=\ldots$ and allow equivalent correct expressions as			
long as they are single fractions			
e.g. $x=\frac{12 \cos \theta}{4+5 \sin ^{2} \theta}$	$y=\frac{18 \sin \theta}{4+5 \sin ^{2} \theta}$,	$x=\frac{12 \cos \theta}{9-5 \cos ^{2} \theta} \quad y=\frac{18 \sin \theta}{9-5 \cos ^{2} \theta}$	A1

