

Mark Scheme (Results)

January 2022

Pearson Edexcel International A Level In Further Pure Mathematics F3 (WFM03) Paper 01

https://xtremepape.rs/

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2022 Question Paper Log Number P71102A Publications Code WFM03_01_2201_MS All the material in this publication is copyright © Pearson Education Ltd 2022

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question Number	Scheme	Notes	Marks
1(a)	$8\cosh^4 x = 8\left(\frac{e^x + e^{-x}}{2}\right)^4 = \frac{8}{16}\left(e^{4x} + 4e^{2x} + 6 + 4e^{-2x} + e^{-4x}\right)$		
	Applies $\cosh x = \frac{e^x + e^{-x}}{2}$ and attempts to expand the bracket to at least 4 different and no		
	more than 5 different terms of the correct form but they may be "uncollected" depending on		
	how they do the expansion. Allow unsimplified terms e.g. $(e^x)^3 e^{-x}$.		
	May see $8\left(\frac{e^x + e^{-x}}{2}\right)^2 \left(\frac{e^x + e^{-x}}{2}\right)^2$	but must attempt to expand as above	
	$= \frac{1}{2} \left(e^{4x} + e^{-4x} \right) + 4 \left(\frac{e^{2x} + e^{-2x}}{2} \right) + 3 = \dots$	Collects appropriate terms and reaches the form $\cosh 4x + p \cosh 2x + q$ or obtains values of p and q.	M1
$= \cosh 4x + 4 \cosh 2x + 3$ Correct expression or values e.g. $p = 4$ $= 3$		Correct expression or values e.g. $p = 4$ and $q = 3$	A1
	No marks are available in (a) if exponentials are not used but note that they may appear		
	in combination with the use of hyperbolic identities e.g.:		
	$8\cosh^4 x = 8\left(\cosh^2 x\right)^2 = 8\left(\frac{\cos^2 x}{\cos^2 x}\right)^2$	$\frac{\cosh 2x + 1}{2} \right)^2 = 2\left(\frac{e^{2x} + e^{-2x}}{2} + 1\right)^2$	
	$= 2\left(\frac{e^{4x} + 2 + e^{-4x}}{4} + e^{2x} + e^{-2x} + 1\right)$	$1 = \frac{e^{4x} + e^{-4x}}{2} + 4\left(\frac{e^{2x} + e^{-2x}}{2}\right) + 2$	
	$=\cosh 4x +$	$4\cosh 2x + 3$	
	Allow to "meet in the middle" e.g. expands as above and compares with		
	$\frac{1}{2} \left(e^{4x} + e^{-4x} \right) + p \left(\frac{e^{2x} + e^{-4x}}{2} \right)$	$\frac{e^{-2x}}{2} + q \Longrightarrow p =, q =$	
	but to score any marks the e	xpansion must be attempted.	
			(3)

(b) Way 1	$\cosh 4x - 17 \cosh 2x + 9 = 0 \Longrightarrow 8 \cosh^4 x - 4 \cosh 2x - 3 - 17 \cosh 2x + 9 = 0$ $\implies 8 \cosh^4 x - 21 \cosh 2x + 6 = 0 \Longrightarrow 8 \cosh^4 x - 21 (2 \cosh^2 x - 1) + 6 = 0$		
	Uses their result from part (a) and $\cosh 2x = \pm 2 \cosh^2 x \pm 1$ to obtain a quadratic equation in $\cosh^2 x$ or		M1
	$\cosh 4x - 17 \cosh 2x + 9 = 0 \Longrightarrow 2(2 \cosh x)$	$h^{2} x-1 \Big)^{2} -1 - 17 \Big(2 \cosh^{2} x - 1 \Big) + 9 = 0$	
	Uses $\cosh 4x = \pm 2 \cosh^2 2x \pm 1$ to obtain a quadratic	and $\cosh 2x = \pm 2 \cosh^2 x \pm 1$ equation in $\cosh^2 x$	
	$\Rightarrow 8\cosh^4 x - 42\cosh^2 x + 27 = 0$	Correct 3TQ in $\cosh^2 x$	A1
	$\Rightarrow 8\cosh^4 x - 42\cosh^2 x + 27 = 0$ $\Rightarrow \cosh^2 x = \frac{9}{2} \left(, \frac{3}{4}\right)$	Solves 3TQ in $\cosh^2 x$ (apply usual rules if necessary) to obtain $\cosh^2 x = k \ (k \in \mathbb{R} \text{ and } > 1)$. May be	M1
	2(7)	implied by their values – check if necessary.	
	$\cosh^2 x = \frac{9}{2} \Longrightarrow \cosh x = \frac{3}{\sqrt{2}}$	$\Rightarrow x = \pm \ln\left(\frac{3}{\sqrt{2}} + \sqrt{\frac{9}{2} - 1}\right)$	
	$\cosh x = \frac{3}{\sqrt{2}} \Longrightarrow \frac{e^x + e^{-x}}{2} = \frac{3}{\sqrt{2}} \Longrightarrow \sqrt{2}e^{-x}$	$e^{2x} - 6e^x + \sqrt{2} = 0 \Longrightarrow e^x = \Longrightarrow x =$	
	$\cosh^2 x = \frac{9}{2} \Longrightarrow \left(\frac{e^x + e^{-x}}{2}\right)^2 = \frac{9}{2} \Longrightarrow e^{4x}$	$x^{x} - 16e^{2x} + 1 = 0 \Longrightarrow e^{2x} = \Longrightarrow x =$	M1
	Takes square root to obtain $\cosh x = k$ $(k > 1)$) and applies the correct logarithmic form for	
	arcosh or uses the correct exponential value :	form for $\cosh x$ to obtain at least one for x	
	The root(s) must be reading (2)	al to score this mark. $\sqrt{2}$ $\sqrt{14}$	
	$x = \pm \ln \left(\frac{3\sqrt{2}}{2}\right)$	$\left(\frac{12}{2} + \frac{\sqrt{14}}{2}\right)$	
	Both correct and exact including brackets.		
	Accept simplified equivalents e.g. $x = \ln\left(\frac{3}{\sqrt{2}}\right)$	$\frac{1}{2} \pm \frac{\sqrt{7}}{\sqrt{2}}$ but withhold this mark if additional	A1
	answers are given unless they are the sam	the e.g. allow $x = \pm \ln\left(\frac{3\sqrt{2}}{2} \pm \frac{\sqrt{14}}{2}\right)$	
			(5)

(b) Way 2	$\cosh 4x - 17 \cosh 2x + 9 = 0 \Longrightarrow 2$	$2\cosh^2 2x - 1 - 17\cosh 2x + 9 = 0$	M1
,, uj =	Applies $\cosh 4x = \pm 2 \cosh^2 2x \pm 1$ to	obtain a quadratic equation in $\cosh 2x$	A 1
	$2\cosh^2 2x - 17\cosh 2x + 8 = 0$	Correct 31Q in $\cos 2x$	AI
	$2\cosh^2 2x - 17\cosh 2x + 8 = 0$	Solves $3TQ$ in cosh $2x$ (apply usual rules if	
	$\Rightarrow \cosh 2x = 8\left(\frac{1}{x}\right)$	necessary) to obtain $L_{L} = \mathbb{D}$ and $L_{L} = 1$	M1
	(,2)	$\cosh 2x = k \ (k \in \mathbb{R} \ \text{and} > 1)$	
	$\cosh 2x = 8 \Longrightarrow 2x =$	$=\pm\ln\left(8+\sqrt{8^2-1}\right)$	
	c	or	
	$\cosh 2x = 8 \Rightarrow \frac{e^{2x} + e^{-2x}}{2} = 8 \Rightarrow e^{4x}$	$-16e^{2x} + 1 = 0 \Rightarrow e^{2x} = \Rightarrow 2x =$	M1
	Applies the correct logarithmic form for arcosh	from $\cosh 2x = k$ ($k > 1$) or uses the correct	
	exponential form for $\cosh 2x$ to	o obtain at least one value for $2x$	
	The root(s) must be re	eal to score this mark.	
	$x = \pm \frac{1}{2} \ln \left(8 + 3\sqrt{7} \right)$	Both correct and exact with brackets. Accept simplified equivalents e.g.	
	or e.g.	$x = \frac{1}{2} \ln \left(8 \pm \sqrt{63} \right)$ but withhold this mark	A1
	$x = \pm \ln \left(8 + 3\sqrt{7}\right)^{\frac{1}{2}}$	if additional answers are given unless they are the same as above.	
(b) Way 3	$\cosh 4x - 17 \cosh 2x + 9 = 0 \Longrightarrow \frac{6}{7}$	$\frac{e^{4x} + e^{-4x}}{2} - \frac{17}{2} \left(e^{2x} + e^{-2x} \right) + 9 = 0$	
	$\Rightarrow e^{8x} - 17e^{6x} + 18$	$8e^{4x} - 17e^{2x} + 1 = 0$	M1A1
	M1: Applies the correct exponential for	ms and attempts a quartic equation in e^{2x}	
	A1: Corre	ct equation	
	$e^{8x} - 17e^{6x} + 18e^{4x} - 17e^{2x} + 1 = 0$	Solves and proceeds to a value for e^{2x} where	M1
	$\Rightarrow e^{2x} = 8 \pm 3\sqrt{7}, \dots$	$e^{2x} > 1$ and real.	1411
	$\Rightarrow e^{2x} = 8 \pm 3\sqrt{7} \Rightarrow 2x = \ln\left(8 \pm 3\sqrt{7}\right)$	Takes ln's to obtain at least one value for $2x$ The root(s) must be real to score this mark.	M1
	$x = \frac{1}{2} \ln \left(8 \pm 3\sqrt{7} \right)$	Both correct and exact with brackets. Accept simplified equivalents e.g.	
	or e.g.	$x = \pm \frac{1}{2} \ln \left(8 + 3\sqrt{7} \right)$ but withhold this mark	A1
	$x = \ln\left(8 \pm 3\sqrt{7}\right)^{\frac{1}{2}}$	if additional answers are given unless they are the same as above.	
			Total 8

Question Number	Scheme	Notes	Marks	
2	$\frac{dx}{d\theta} = \frac{\sec\theta \tan\theta + \sec^2\theta}{\sec\theta + \tan\theta} - \cos\theta$ Correct derivative. Do not condone missing brackets e.g. $\frac{dx}{d\theta} = \frac{1}{\sec\theta + \tan\theta} \times \sec\theta \tan\theta + \sec^2\theta - \cos\theta$ unless a correct expression is implied by subsequent work. Award when a correct expression is seen but note that other forms are possible e.g. $\sec\theta - \cos\theta$, $\tan\theta \sin\theta$		B1	
	$\left(\frac{\mathrm{d}x}{\mathrm{d}\theta}\right)^2 + \left(\frac{\mathrm{d}y}{\mathrm{d}\theta}\right)^2 = \left(\frac{\sec\theta\tan\theta}{\sec\theta}\right)^2$ Attempts $\frac{\mathrm{d}y}{\mathrm{d}\theta}$ and the	$\frac{\theta + \sec^2 \theta}{\tan \theta} - \cos \theta \Big]^2 + \left(-\sin \theta\right)^2$ nen $\left(\frac{\mathrm{d}x}{\mathrm{d}\theta}\right)^2 + \left(\frac{\mathrm{d}y}{\mathrm{d}\theta}\right)^2$	M1	
	$S = (2\pi) \int \cos\theta \sqrt{\left(\frac{\mathrm{d}x}{\mathrm{d}\theta}\right)^2 + \left(\frac{\mathrm{d}y}{\mathrm{d}\theta}\right)^2} \mathrm{d}\theta$ $= (2\pi) \int \cos\theta \sqrt{\left(\frac{\sec\theta\tan\theta + \sec^2\theta}{\sec\theta + \tan\theta} - \cos\theta\right)^2 + (-\sin\theta)^2} \mathrm{d}\theta$ Applies a correct surface area formula using their $\frac{\mathrm{d}x}{\mathrm{d}\theta}$ and their $\frac{\mathrm{d}y}{\mathrm{d}\theta}$ with or without the 2π For reference: $\sqrt{\left(\frac{\sec\theta\tan\theta + \sec^2\theta}{\sec\theta + \tan\theta} - \cos\theta\right)^2 + (-\sin\theta)^2} = \tan\theta$			
	$(2\pi)\int \sin\theta \ \mathrm{d}\theta$	Fully correct simplified integral with or without the 2π	A1	
	$=(2\pi)[-\cos\theta](+c)$	Correct integration with or without the 2π	A1	
	$(2\pi)\left[-\cos\theta\right]_{0}^{\frac{\pi}{4}} = (2\pi)\left(-\frac{1}{\sqrt{2}}+1\right)$ Applies the limits 0 and $\frac{\pi}{4}$. Must see evidence of both limits if necessary but condone e.g. $(2\pi)\left(-\frac{1}{\sqrt{2}}-1\right)$ Depends on both previous method marks. TSA = $2\pi\left(-\frac{1}{\sqrt{2}}+1\right)+\pi\times1^{2}+\pi\times\left(\frac{1}{\sqrt{2}}\right)^{2}$ Correct expressions for the 2 "ends" and adds these to their curved surface area. Depends on the previous method mark.			
	$=\frac{\pi}{2}(7-2\sqrt{2})$ Correct answer in the required form or correct values for p and q.			
	<u>Note:</u> The final answer should follow correct work. The final mark should be withheld			
	following e.g. $\frac{dy}{d\theta}$ clearly seen as +sin θ or $\int \sin \theta d\theta = +\cos \theta$			
	<u>N</u> Without the "ends" the answer i	$\frac{1}{2} \frac{\pi}{2} \left(4 - 2\sqrt{2} \right) \text{ (usually scores 6/8)}$		
			(8) Total 9	
			101010	

Alternative for first 4 marks:

$$\frac{\frac{dx}{d\theta} = \frac{\sec\theta \tan\theta + \sec^2\theta}{\sec\theta + \tan\theta} - \cos\theta}{\sec\theta + \tan\theta} - \cos\theta}$$
Correct derivative.
Do not condone missing brackets e.g. $\frac{dx}{d\theta} = \frac{1}{\sec\theta + \tan\theta} \times \sec\theta \tan\theta + \sec^2\theta - \cos\theta$
unless a correct expression is implied by subsequent work. Award when a correct expression is seen but note that other forms are possible
$$\frac{\csc\theta - \cos\theta}{1 + \left(\frac{dy}{dx}\right)^2} = 1 + \left(\frac{-\sin\theta}{\sec\theta - \cos\theta}\right)^2$$
M1
$$\frac{S = (2\pi) \int \cos\theta \sqrt{1 + \left(\frac{dy}{dx}\right)^2} \frac{dx}{d\theta} d\theta}{\frac{d\theta}{d\theta} + \frac{d\theta}{d\theta}} \times \frac{d\theta}{d\theta} d\theta}$$

$$= (2\pi) \int \cos\theta \sqrt{1 + \left(\frac{-\sin\theta}{\sec\theta - \cos\theta}\right)^2} (\sec\theta - \cos\theta) d\theta$$
M1
$$\frac{S = (2\pi) \int \cos\theta \sqrt{1 + \left(\frac{-\sin\theta}{\sec\theta - \cos\theta}\right)^2} (\sec\theta - \cos\theta) d\theta}{\frac{\sin\theta}{d\theta} + \frac{\sin\theta}{d\theta} + \frac{\sin\theta}{d\theta}} d\theta$$

$$\frac{S = (2\pi) \int \cos\theta \sqrt{1 + \left(\frac{-\sin\theta}{\sec\theta - \cos\theta}\right)^2} (\sec\theta - \cos\theta) d\theta}{\frac{\sin\theta}{d\theta} + \frac{\sin\theta}{d\theta}} d\theta}$$
M1
$$\frac{\sin\theta}{d\theta} = \frac{\sin\theta}{d\theta} + \frac{\sin\theta}{d\theta} + \frac{\sin\theta}{d\theta} d\theta}{\frac{\sin\theta}{d\theta} + \frac{\sin\theta}{d\theta}} d\theta}$$

$$\frac{\sin\theta}{d\theta} = \frac{\sin\theta}{d\theta} + \frac{\sin\theta}{d\theta} + \frac{\sin\theta}{d\theta} + \frac{\sin\theta}{d\theta} d\theta}{\frac{\sin\theta}{d\theta} + \frac{\sin\theta}{d\theta}} d\theta}$$

$$\frac{\sin\theta}{d\theta} = \frac{\sin\theta}{d\theta} + \frac{\sin\theta}{d\theta$$

Question Number	Scheme	Notes	Marks
3(a)	$y = \operatorname{arsech}\left(\frac{x}{2}\right) \Longrightarrow \operatorname{sech} y = \frac{x}{2}$ $\Longrightarrow \frac{\mathrm{d}x}{\mathrm{d}y} = -2\operatorname{sech} y \tanh y$	Takes "sech" of both sides and differentiates to obtain $\frac{dx}{dy} = k$ sech y tanh y or equivalent.	M1
	$\Rightarrow \frac{dx}{dy} = -2\left(-\frac{1}{2}\right)$	$\left(\frac{x}{2}\right)\sqrt{1-\left(\frac{x}{2}\right)^2}$ and $\tanh y$ with $\sqrt{1-\left(\frac{x}{2}\right)^2}$	MIA1
	A1: Correct equation involving $\frac{dx}{dy}$	or $\frac{dy}{dx}$ in any form in terms of x only.	
	$\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-2}{x\sqrt{4-x^2}}$	Correct derivative in the required form or correct values for p and q .	A1
			(4)
(a) Way 2	$y = \operatorname{arsech}\left(\frac{x}{2}\right) \Longrightarrow \operatorname{sech} y = \frac{x}{2}$ $\Longrightarrow \operatorname{cosh} y = \frac{2}{x} \Longrightarrow \operatorname{sinh} y \frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{2}{x^2}$	Takes "sech" of both sides, changes to "cosh" and differentiates to obtain $\sinh y \frac{dy}{dx} = \frac{k}{x^2}$ or equivalent.	M1
		$\frac{1}{y} = -\frac{1}{x^2 \sqrt{\left(\frac{2}{x}\right)^2 - 1}}$ $y \text{ with } \sqrt{\left(\frac{2}{x}\right)^2 - 1}$ $\int \frac{dy}{dx} \text{ in any form in terms of } x \text{ only.}$	M1A1
	$\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-2}{x\sqrt{4-x^2}}$	Correct derivative in the required form or correct values for p and q .	A1
(a) Way 3	$y = \operatorname{arsech}\left(\frac{x}{2}\right) =$ Changes to "arcosh" correctly. Score to	$\Rightarrow y = \operatorname{arcosh}\left(\frac{2}{x}\right)$ this as the second M mark on EPEN	M1
	dv	1 2	+
	$\Rightarrow \frac{dy}{dx} = \frac{1}{\sqrt{\left(\frac{2}{x}\right)^2}}$	$\frac{1}{\left(\frac{2}{x}\right)^2 - 1} \times -\frac{2}{x^2}$	
	M1: Differentiates to the	e form $\frac{\kappa}{x^2 \sqrt{\left(\frac{2}{x}\right)^2 - 1}}$ oe	M1A1
	A1: Correct equation involving $\frac{dx}{dy}$	or $\frac{dy}{dx}$ in any form in terms of x only.	
	Score this as the first M mark and first A mark on EPEN.		+
	$\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-2}{x\sqrt{4-x^2}}$	Correct derivative in the required form or correct values for p and q .	A1

(a) Way 4	$y = \operatorname{arsech}\left(\frac{x}{2}\right) \Longrightarrow \operatorname{sech} y = \frac{x}{2} \Longrightarrow \left(\frac{x}{2}\right)$	$\left(\frac{1}{2}\right)^2 = \operatorname{sech}^2 y \Longrightarrow \tanh y = \sqrt{1 - \left(\frac{x}{2}\right)^2}$	
	\Rightarrow sech ² $y \frac{dy}{dx} =$	$=-x\left(1-\frac{x^2}{4}\right)^{-\frac{1}{2}}$	M1
	Differentiates to sech ² $y \frac{dy}{dx}$	$=kx\left(1-\frac{x^2}{4}\right)^{-\frac{1}{2}}$ or equivalent	
	$\Rightarrow \operatorname{sech}^{2} y \frac{\mathrm{d}y}{\mathrm{d}x} = -x \left(1 - \frac{x^{2}}{4}\right)^{-\frac{1}{2}} \Rightarrow \frac{x^{2}}{4} \frac{\mathrm{d}y}{\mathrm{d}x}$	$= -x \left(1 - \frac{x^2}{4} \right)^{-\frac{1}{2}} \Longrightarrow \frac{dy}{dx} = -\frac{4}{x} \left(1 - \frac{x^2}{4} \right)^{-\frac{1}{2}}$	
	M1: Replaces se	$ ch^2 y \text{ with } \left(\frac{2}{x}\right)^2 $	M1A1
	A1: Correct equation involving $\frac{dx}{dy}$	or $\frac{dy}{dx}$ in any form in terms of x only.	
	$\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-2}{x\sqrt{4-x^2}}$	Correct derivative in the required form or correct values for p and q .	A1
(a) Way 5	$y = \operatorname{arsech}\left(\frac{x}{2}\right) \Rightarrow \operatorname{sech} y = \frac{x}{2} \Rightarrow y = \operatorname{artanh}\left(\sqrt{1 - \left(\frac{x}{2}\right)^2}\right)$		M1
	Changes to "artanh" correctly. Score t	his as the second M mark on EPEN.	
	$\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\frac{1}{2}\left(1 - \frac{x^2}{4}\right)^{-\frac{1}{2}}}{1 - \left(1 - \frac{x^2}{4}\right)} \times -\frac{x}{2}$		
	M1: Differentiates to the dx	form $\frac{kx\left(1-\frac{x^2}{4}\right)^{\frac{1}{2}}}{1-\left(1-\frac{x^2}{4}\right)}$ oe	M1A1
	A1: Correct equation involving $\frac{dy}{dy}$	$\frac{dx}{dx}$ in any form in terms of x only.	
	Score this as the first M mar	k and first A mark on EPEN.	
	$\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-2}{x\sqrt{4-x^2}}$	Correct derivative in the required form or correct values for <i>p</i> and <i>q</i> .	A1

There may be other methods used. If you are in any doubt if the method deserves any marks use Review.

(b)	$f(x) = \tanh^{-1}(x) + \operatorname{sech}^{-1}\left(\frac{x}{2}\right) \Longrightarrow f'(x) = \frac{1}{1-x^2} - \frac{2}{x\sqrt{4-x^2}}$ Correct f'(x) following through their (a) of the form $\frac{p}{x\sqrt{q-x^2}}$ Also allow with "made up" p and q or the letters p and q.		
	$\frac{1}{1-x^2} - \frac{2}{x\sqrt{4-x^2}} = 0 \Longrightarrow 2(1-x^2) = x\sqrt{4-x^2} \Longrightarrow 4(1-x^2)^2 = x^2(4-x^2)$ Sets $\frac{dy}{dx} = 0$ with their (a) of the form $\frac{p}{x\sqrt{q-x^2}}$ and squares both sides to reach a quartic equation		
	$5x^4 - 12x^2 + 4 = 0$	Correct quartic	A1
	$5x^4 - 12x^2 + 4 = 0 \Longrightarrow x^2 = 2, \ 0.4$ $\Longrightarrow x = \dots$	Solves their quartic equation to obtain a value for x^2 and proceeds to a value for x. Apply usual rules for solving and check if necessary. Allow complex roots.	M1
	$x = \sqrt{\frac{2}{5}}$	Correct exact answer (allow equivalents e.g. $\frac{\sqrt{10}}{5}$). If any extra answers given score A0 e.g. $x = \pm \sqrt{\frac{2}{5}}$	A1
			(5)
			Total 9

Special case: It is possible for a correct solution in (b) following a sign error in (a) e.g. $\frac{dy}{dx} = \frac{2}{x\sqrt{4-x^2}}$ $f(x) = \tanh^{-1}(x) + \operatorname{sech}^{-1}\left(\frac{x}{2}\right) \Rightarrow f'(x) = \frac{1}{1-x^2} + \frac{2}{x\sqrt{4-x^2}}$ $\frac{1}{1-x^2} + \frac{2}{x\sqrt{4-x^2}} = 0 \Rightarrow 2(1-x^2) = -x\sqrt{4-x^2} \Rightarrow 4(1-x^2)^2 = x^2(4-x^2) \text{ etc.}$ This is likely to score M1M1A0A0 in (a) but allow full recovery in (b) if it leads to the correct answer.

Question Number	Scheme	Notes	Marks
4(a)	$\lambda = 3 \Rightarrow \mathbf{M} - 3\mathbf{I} = \begin{vmatrix} 3 & k & 2 \\ k & 2 & 0 \\ 2 & 0 & 4 \end{vmatrix} = $ or e. $ \mathbf{M} - \lambda \mathbf{I} = \begin{vmatrix} 6 - \lambda \\ k & 3 \\ 2 \end{vmatrix}$ $\Rightarrow (6 - \lambda)(5 - \lambda)(7 - \lambda) - k(k(7 - \lambda)) + 2$ Correct interpretation of 3 being an eigenvalue equation in If the method for forming the determinant i "compor NB rule of Sarrus given and the second s	$0 \Rightarrow 3(8) - k(4k) + 2(-4) = 0$ g. $\begin{vmatrix} k & 2 \\ 5 - \lambda & 0 \\ 0 & 7 - \lambda \end{vmatrix} = 0$ $0 (0 - 2(5 - \lambda)) = 0 \Rightarrow 24 - k(4k) - 8 = 0$ we leading to the formation of a quadratic n k only . Is not clear then look for at least 2 correct thents''. Therefore $24 - 8 - 4k^2 = 0$	M1
	$\Rightarrow 4k^2 = 16 \Rightarrow k = \dots$	Solves quadratic. Depends on the first M.	d M1
	$k = \pm 2$	Correct values	Al
			(3)
(a) Way 2	$\begin{pmatrix} 6 & k & 2 \\ k & 5 & 0 \\ 2 & 0 & 7 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = 3 \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ $z = -\frac{1}{2}x, y = -\frac{1}{2}kx \Longrightarrow 6x$ Eliminates z and y and reaches a	$6x + ky + 2z = 3x$ $\Rightarrow kx + 5y = 3y$ $2x + 7z = 3z$ $-\frac{k^2x}{2} - x = 3x \Rightarrow \frac{k^2}{2} = 2$ a guadratic equation in k only	M1
	$\frac{k^2}{2} = 2 \Longrightarrow k = \dots$	Solves quadratic. Depends on the first M.	d M1
	$k = \pm 2$	Correct values	A1
(b)	$k = -2 \Rightarrow \mathbf{M} - \lambda \mathbf{I} = \begin{vmatrix} 6 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ $	$\begin{vmatrix} -\lambda & -2 & 2 \\ -2 & 5-\lambda & 0 \\ 2 & 0 & 7-\lambda \end{vmatrix}$ $(2\lambda - 14) + 2(2\lambda - 10) = 0$ e attempt at the characteristic equation (the "= ded here). or at least 2 correct "components".	M1
	$\Rightarrow \lambda^3 - 18\lambda^2 + 99\lambda - 162 = 0 \Rightarrow \lambda = \dots$	Solves cubic. May use $\lambda = 3$ as a factor or calculator to solve. Depends on the first mark. Allow complex roots.	d M1
	$\lambda = 6, 9 (,3)$	Allow to come from $k = 2$	A1
			(3)

(c)	$\begin{pmatrix} 6 & -2 & 2 \\ -2 & 5 & 0 \\ 2 & 0 & 7 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = 3 \begin{pmatrix} x \\ y \\ z \end{pmatrix} \stackrel{6x-2}{\Rightarrow} -2x + 3 \stackrel{7x}{\Rightarrow} -$	y + 2z = 3x 5y = 3y z = 3z x = 3z	
	or		
	$\begin{pmatrix} 3 & -2 & 2 \\ 2 & 2 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Rightarrow 2x + 4$	$y + 2z = 0 \qquad (x)$	M1
	$ \begin{pmatrix} -2 & 2 & 0 \\ 2 & 0 & 4 \end{pmatrix} \begin{pmatrix} y \\ z \end{pmatrix}^{=} \begin{pmatrix} 0 \\ 0 \end{pmatrix} \xrightarrow{>} -2x + 3 \\ 2x + 7z $	$z = 0 \qquad \qquad$	
	Correct strategy for finding the eigenvector	using a value of k from (a)	
	Note that the cross product of any 2 rows or colum	ns of $M - 3I$ gives an eigenvector	
	$p\begin{pmatrix} 2\\ 2\\ -1 \end{pmatrix} $ Any c	correct eigenvector	A1
	$\frac{1}{3} \begin{pmatrix} 2\\ 2\\ -1 \end{pmatrix} $ Any c	correct normalised eigenvector	A1
			(3)
			Total 9

Question Number	Scheme	Notes	Marks
5(i)	$x^2 - 3x + 5 = \left(x - \frac{3}{2}\right)^2 + \frac{11}{4}$	Correct completion of the square	B1
	$\int \frac{1}{\sqrt{x^2 - 3x + 5}} \mathrm{d}x = \int \frac{1}{\sqrt{\left(x - \frac{3}{2}\right)^2}}$	$\frac{1}{x^{2} + \frac{11}{4}} dx = \sinh^{-1} \frac{2x - 3}{\sqrt{11}} (+c)$	M1 A 1
	M1: Use of A1: Fully correct expression (sinh ⁻¹ condone omission of $+ c$)	IVITA1
	Allow equivalent correct expressions e.g. s	$\sinh^{-1}\frac{x-\frac{3}{2}}{\sqrt{\frac{11}{4}}}(+c), \ \sinh^{-1}\frac{x-\frac{3}{2}}{\frac{\sqrt{11}}{2}}(+c)$	
	Allow equivalents for sinh ⁻¹ e.g. arsin	th, arcsinh but not arsin or arcsin	
	e.g. $\ln\left(\frac{2x-3}{\sqrt{11}} + \sqrt{\left(\frac{2x-3}{\sqrt{11}}\right)^2 + 1}\right),$	$\ln\left(x - \frac{3}{2} + \sqrt{\left(x - \frac{3}{2}\right)^2 + \frac{11}{4}}\right)$	
	but apply isw once a correct answer is seen.		(2)
(ii)	$(2 + 4 + 2 + 4)^2 = 4(-2 + 63)$	$\left(\left(1 \right)^2 \right)$	(3)
	$63 + 4x - 4x^{2} = -4\left(x^{2} - x - \frac{1}{4}\right)$ $= -4\left(\left(x - \frac{1}{2}\right)^{2} - \frac{64}{4}\right)$	Obtains $-4\left(\left(x - \frac{1}{2}\right) \pm\right)$ or $-4\left(x - \frac{1}{2}\right)^2 \pm$ or $ (2x - 1)^2$	M1
	$-4\left[\left(x-\frac{1}{2}\right)^{2}-16\right] \text{ or } 64-4\left(x-\frac{1}{2}\right)^{2}$	Correct completion of the square	A1
	64 - (2x - 1)		
	$\int \frac{1}{\sqrt{63 + 4x - 4x^2}} \mathrm{d}x = \frac{1}{2}$	$\frac{1}{2}\sin^{-1}\left(\frac{2x-1}{8}\right)(+c)$	
	A1: Fully correct expression (condone omission of $+ c$)	M1A1
	Allow equivalent correct expressions e.g. $\frac{1}{2}$	$\sin^{-1}\frac{x-\frac{1}{2}}{4}(+c), -\frac{1}{2}\sin^{-1}\frac{\frac{1}{2}-x}{4}(+c)$	
	Allow equivalents for sin ⁻¹ e.g. arsin	, arcsin but not arsinh or arcsinh	
	ſ	1 , f 1 ,	(4)
	In (ii) there are no marks for using $\int \frac{1}{\sqrt{63+4}}$ But if completion of square attempt	$\frac{1}{4x - 4x^2} dx = -\int \frac{1}{\sqrt{4x^2 - 63 - 4x}} dx$	
	$\int \frac{1}{\sqrt{63+4x-4x^2}} dx = \int \frac{1}{\sqrt{64-(2x-1)^2}} dx$	but then M0 for $=\int \frac{-1}{\sqrt{(2x-1)^2-64}} dx$	
		•	Total 7

Question Number	Scheme	Notes	Marks		
6(a)	$\int e^x \sin^n x dx = e^x \sin^n x - n \int e^x \sin^{n-1} x \cos x dx$ Applies integration by parts to obtain $\pm e^x \sin^n x \pm \alpha \int e^x \sin^{n-1} x \cos x dx$				
	$= e^{x} \sin^{n} x - n \left\{ e^{x} \sin^{n-1} x \cos x - \int e^{x} \left((n-1) \sin^{n-2} x \cos^{2} x - \sin^{n} x \right) dx \right\}$ M1: Applies integration by parts to $\pm \alpha \int e^{x} \sin^{n-1} x \cos x dx$ to obtain $\pm e^{x} \sin^{n-1} x \cos x \pm \int e^{x} \left(\alpha \sin^{n-2} x \cos^{2} x - \beta \sin^{n} x \right) dx$ Or equivalent e.g. $\pm e^{x} \sin^{n-1} x \cos x \pm \int e^{x} \left(\alpha \sin^{n-2} x - \beta \sin^{n} x \right) dx$ (if Pythagoras applied first) A1: Fully correct expression for I_{n} from parts applied twice.				
	$= e^{x} \sin^{n} x - n \left\{ e^{x} \sin^{n-1} x \cos x - \int e^{x} \left((n-1) \sin^{n-2} x \left(1 - \sin^{2} x \right) - \sin^{n} x \right) dx \right\}$ Applies $\cos^{2} x = 1 - \sin^{2} x$				
	$= e^{x} \sin^{n} x - n \left\{ e^{x} \sin^{n-1} x \cos x - \int e^{x} \left(\left(n - e^{x} \sin^{n} x - n \left\{ e^{x} \sin^{n-1} x \cos x - \int e^{x} e^{x} \sin^{n} x - n e^{x} \sin^{n-1} x \cos x - \int e^{x} e^{x} \sin^{n} x - n e^{x} \sin^{n-1} x \cos x + n \right\}$ Completes by introducing I_{n-2} and	1) $\sin^{n-2} x - (n-1)\sin^n x - \sin^n x) dx$ $\left\{ x \left((n-1)\sin^{n-2} x - n\sin^n x \right) dx \right\}$ $\left\{ (n-1)I_{n-2} - n^2 I_n \Longrightarrow I_n =$ I_n and makes I_n the subject	dM1		
	$I_n = \frac{e^x \sin^{n-1} x}{n^2 + 1} (\sin x - n \cos^{n-1} x)$ Fully correct proof with no errors but allow e.g. errors must be recovered before fina	$p(x) + \frac{n(n-1)}{n^2 + 1} I_{n-2} *$ the occasional missing "dx" but any clear lanswer e.g. missing brackets.	A1*		

(b)

$$I_{4} = \frac{e^{x} \sin^{3} x}{17} (\sin x - 4 \cos x) + \frac{12}{17} I_{2}$$
or

$$I_{5} = \frac{e^{x} \sin^{3} x}{5} (\sin x - 2 \cos x) + \frac{2}{5} I_{0}$$
M1

$$= \frac{e^{x} \sin^{3} x}{17} (\sin x - 4 \cos x) + \frac{12}{17} \left(\frac{e^{x} \sin x}{5} (\sin x - 2 \cos x) + \frac{2}{5} I_{0}\right)$$

$$= \frac{e^{x} \sin^{3} x}{17} (\sin x - 4 \cos x) + \frac{12e^{x} \sin x}{85} (\sin x - 2 \cos x) + \frac{24}{85} e^{x}$$
Applies the reduction formula again and uses $I_{0} = \int e^{x} dx = e^{x}$ to obtain an expression in
terms of x

$$\int_{0}^{\frac{x}{2}} e^{x} \sin^{4} x dx = \left[\frac{e^{x} \sin^{3} x}{17} (\sin x - 4 \cos x) + \frac{12e^{x} \sin x}{85} (\sin x - 2 \cos x) + \frac{24}{85} e^{x}\right]_{0}^{\frac{x}{2}}$$
dM1

$$\int_{0}^{\frac{x}{2}} e^{x} \sin^{4} x dx = \left[\frac{e^{x} \sin^{3} x}{17} (\sin x - 4 \cos x) + \frac{12e^{x} \sin x}{85} (\sin x - 2 \cos x) + \frac{24}{85} e^{x}\right]_{0}^{\frac{x}{2}}$$
Uses the limits 0 and $\frac{\pi}{2}$ and subtracts. Depends on both previous marks.

$$\frac{-\frac{41e^{\frac{x}{2}}}{85} - \frac{24}{85}}$$
Uses the limits 0 and $\frac{\pi}{2}$ and subtracts. Depends on both previous marks.

$$\frac{-\frac{41e^{\frac{x}{2}}}{17} + \frac{24}{85} - \frac{24}{85}} = \frac{44}{17}$$
(4)
Note that the limits may be applied as they go e.g.:
M1: $I_{4} = \frac{e^{\frac{\pi}{2}}}{17} (1-0) + \frac{12}{17}I_{2}$

$$I_{5} = \frac{e^{\frac{\pi}{2}}}{17} (1-0) + \frac{2}{5}I_{0}$$

$$I_{6} = \frac{e^{\frac{\pi}{2}} - 1}{18}$$

$$M1 = \frac{41e^{\frac{\pi}{2}}}{17} + \frac{21}{17} \left(\frac{e^{\frac{\pi}{2}}}{17} + \frac{2}{17} + \frac{1}{17} \left(\frac{e^{\frac{\pi}{2}}}{17} + \frac{2}{17} + \frac{1}{17} \left(\frac{e^{\frac{\pi}{2}}}{17} + \frac{2}{17} + \frac{1}{17} \left(\frac{e^{\frac{\pi}{2}}}{17} + \frac{1}{17} + \frac{1}{17} \left(\frac{e^{\frac{\pi}{2}}}{17} + \frac{1}{17} + \frac{1}{17} \left(\frac{e^{\frac{\pi}{2}}}{17$$

Question Number	Scheme	Notes	Marks
7(a)	$\frac{x-3}{4} = \frac{y-5}{-2} = \frac{z-4}{7} \Longrightarrow \mathbf{r} = \begin{pmatrix} 3\\5\\4 \end{pmatrix} \pm \lambda \begin{pmatrix} 4\\-2\\7 \end{pmatrix}$	Converts to parametric form. " r =" is not required	M1
	2x + 4y - z = 1 $\Rightarrow 2(3 + 4\lambda) + 4(5 - 2\lambda) - 4 - 7\lambda = 1$ $\Rightarrow \lambda = \dots(3) \Rightarrow P \text{ is } \dots$	Correct strategy for finding <i>P</i> . Condone the use of $2x + 4y - z = 0$ for the plane equation.	M1
	(15, -1, 25)	Correct coordinates. Condone if given as a vector.	A1 (3)
(a) Way 2	$\frac{x-3}{4} = \frac{y-5}{-2} \Longrightarrow x = 13 - 2y$	Uses the Cartesian equation to find x in terms of y	M1
	$2x + 4y - z = 1 \Longrightarrow 26 - 4y + 4y - z = 1$ $\implies z = \dots, \ x = \dots, \ y = \dots$	Correct strategy for finding <i>P</i> . Condone the use of $2x + 4y - z = 0$ for the plane equation.	M1
	(15, -1, 25)	Correct coordinates. Condone if given as a vector.	A1
(b)	$ \begin{pmatrix} 4 \\ -2 \\ 7 \end{pmatrix} \bullet \begin{pmatrix} 2 \\ 4 \\ -1 \end{pmatrix} = 8 - 8 - 7 = -7 $	Applies the scalar product between the direction of l_1 and the normal to the plane	M1
	Examples $\phi = \cos^{-1} \frac{\pm 7}{\sqrt{69}\sqrt{21}} = \dots \phi =$ Attempts to find a relevant angle Depends on the first n	$\sin^{-1} \frac{\pm 7}{\sqrt{69}\sqrt{21}} = \dots$ e in degrees or radians. method mark.	d M1
	$\theta = 10.6^{\circ}$	Allow awrt 10.6 but do not isw and mark the final answer. For reference $\theta = 10.5965654^{\circ}$	A1 (3)
(b) Way 2	$\begin{pmatrix} 4\\-2\\7 \end{pmatrix} \times \begin{pmatrix} 2\\4\\-1 \end{pmatrix} = \begin{pmatrix} 26\\-18\\-20 \end{pmatrix}$	Attempts vector product of normal to Π and direction of l_1	M1
	$\sqrt{26^2 + 18^2 + 20^2} = \sqrt{21}\sqrt{69}\sin\alpha$ $\sin\alpha = \frac{10\sqrt{46}}{69} \Rightarrow \alpha = \dots$	Attempts to find a relevant angle. Depends on the first method mark.	d M1
	$\theta = 10.6^{\circ}$	Allow awrt 10.6 but do not isw and mark the final answer. For reference $\theta = 10.5965654^{\circ}$	A1

(c)	$\mathbf{a} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & 4 & -1 \\ 4 & -2 & 7 \end{vmatrix} = \begin{pmatrix} 26 \\ -18 \\ -20 \end{pmatrix}$	Attempts vector product of normal to Π and direction of l_1 . If no method is seen expect at least 2 correct components.	luct of normal to Π ino method is seenect components.	
	$\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 13 & -9 & -10 \end{vmatrix} = \begin{pmatrix} 49 \\ -7 \end{vmatrix}$	Attempts vector product of " a " with normal to Π to find direction of l_2	M1	
	$\begin{vmatrix} 2 & 4 & -1 \end{vmatrix} \begin{pmatrix} 70 \end{pmatrix}$	Correct direction for l_2	A1	
	$\mathbf{r} = \begin{pmatrix} 15\\-1\\25 \end{pmatrix} + \mu \begin{pmatrix} 7\\-1\\10 \end{pmatrix}$	Depends on both previous M marks Attempts vector equation using their direction vector and their P	ddM1	
		Correct equation or any equivalent correct vector equation	A1	
			(5)	
(c) Way 2	$\lambda = 1 \Longrightarrow (7, 3, 11) \text{ lies on } l_1$ $\mathbf{r} = \begin{pmatrix} 7\\3 \\ +t \\ 4 \end{pmatrix}$			
	$\begin{pmatrix} 11 \end{pmatrix} \begin{pmatrix} -1 \end{pmatrix}$ $\Rightarrow 2(7+2t) + 4(3+4t) - 11 + t = 1$	Complete method to find a point on l_2	M1	
	$\Rightarrow 2(7+2i)+4(3+4i)-11+i-1$ $t = -\frac{2}{3} \Rightarrow \left(\frac{17}{3}, \frac{1}{3}, \frac{35}{3}\right) \text{ is on } l_2$			
	Direction of l_{0} is $\begin{pmatrix} 15\\ -1 \end{pmatrix} - \frac{1}{2} \begin{pmatrix} 17\\ 1 \end{pmatrix} - \frac{1}{28} \begin{pmatrix} 28\\ -4 \end{pmatrix}$	Uses their point and their <i>P</i> to find direction of l_2	M1	
	$\begin{bmatrix} 25 & 3 & 1 \\ 35 & 3 & 40 \end{bmatrix}$	Correct direction for l_2	A1	
	$\mathbf{r} = \begin{pmatrix} 15\\-1\\+\mu & -1 \end{pmatrix}$	Attempts vector equation using their direction vector and their point on l_2 Correct equation or any equivalent	ddM1	
	(25) (10)	and not e.g. $l_2 = \dots$	AI	
(c) Wav 3	Normal to plane from l_1			
	$\mathbf{r} = \begin{bmatrix} 5\\5\\4 \end{bmatrix} + t \begin{bmatrix} 2\\4\\-1 \end{bmatrix}$	Complete method to find a point on l_2	M1	
	$\Rightarrow 2(3+2t)+4(5+4t)-(4-t)=1$			
	$\frac{i - 1}{2} \xrightarrow{(1, 1, 3)} 15 \text{ of } i_2$	Uses their point and their <i>P</i> to find		
	Direction of l_2 is $\begin{pmatrix} 15\\-1\\-1 \end{pmatrix} = \begin{pmatrix} 1\\1\\-2 \end{pmatrix}$	direction of l_2	M1	
	$\begin{bmatrix} 1 & 1 \\ 25 \end{bmatrix} \begin{bmatrix} 1 \\ 25 \end{bmatrix} \begin{bmatrix} 1 \\ 20 \end{bmatrix}$	Correct direction for l_2	A1	
	$\mathbf{r} = \begin{pmatrix} 1\\1\\5 \end{pmatrix} + \mu \begin{pmatrix} 7\\-1\\10 \end{pmatrix}$	Attempts vector equation using their direction vector and their point on l_2	ddM1	
		Correct equation or any equivalent correct vector equation. Must have $\mathbf{r} =$ and not e.g. $l_2 =$	A1	
			Total 11	

Question Number	Scheme	Notes	Marks
8(a)	$b^{2} = a^{2} (1 - e^{2}) \Longrightarrow 4 = 9 (1 - e^{2}) \Longrightarrow e = \dots$ or e.g. $e = \sqrt{1 - \frac{b^{2}}{a^{2}}} \Longrightarrow e = \dots$	Uses a correct formula with a and b correctly placed to find a value for e	M1
	$e = \frac{\sqrt{5}}{3}$	Correct value (or equivalent) $e = \pm \frac{\sqrt{5}}{3}$ scores A0	A1
			(2)
(b)(i)	$(\pm ae, 0) = (\pm \sqrt{5}, 0) \text{ or } (\pm 3\frac{\sqrt{5}}{3}, 0)$ Correct foci. Must be coordinates but allow unsimplified and isw if necessary. Follow through their <i>a</i> so allow for $(\pm 3 \times \text{their } a, 0)$		B1ft
(ii)	$x = \pm \frac{a}{e} = \pm \frac{9}{\sqrt{5}} \text{ or } x = \pm \frac{3}{\frac{\sqrt{5}}{3}}$ Correct directrices. Must be equations but allow unsimplified and isw if necessary. Follow through their <i>a</i> so allow for $x = \pm \frac{3}{\sqrt{5}}$		B1ft
			(2)
	Use of a^2 for a and b^2 for b <u>consistently</u> scores M0A0 in (a) and B1ft B1ft in (b) This gives $e = \frac{\sqrt{65}}{9}$, $(\pm\sqrt{65}, 0)$, $x = \pm \frac{81}{\sqrt{65}}$		
(c)	$\frac{dx}{d\theta} = -3\sin\theta, \ \frac{dy}{d\theta} = 2\cos\theta$ or $\frac{2x}{9} + \frac{2y}{4}\frac{dy}{dx} = 0$ or $y = \left(4 - \frac{4x^2}{9}\right)^{\frac{1}{2}} \Rightarrow \frac{dy}{dx} = -\frac{4x}{9}\left(4 - \frac{4x^2}{9}\right)^{\frac{1}{2}}$ $\Rightarrow \frac{dy}{dx} = \dots \left(=\frac{2\cos\theta}{-3\sin\theta}\right)$	Correct strategy for the gradient of <i>l</i> in terms of θ . Allow $\frac{dy}{dx} = \frac{2\cos\theta}{-3\sin\theta}$ to be stated.	M1
	$y - 2\sin\theta = \frac{2\cos\theta}{-3\sin\theta} (x - 3\cos\theta)$	complete method). Finding the equation of the normal is M0.	M1
	$-3y\sin\theta + 6\sin^2\theta = 2x\cos\theta - 6\cos^2\theta$ $2x\cos\theta + 3y\sin\theta = 6^*$	Cso with at least one intermediate line of working	A1*
			(3)

(d)	$l_2: y = \frac{3\sin\theta}{2\cos\theta}x$	Correct equation for l_2	B1
	$2x\cos\theta + 3y\sin\theta = 6, y = \frac{3\sin\theta}{2\cos\theta}x$	Complete method for Q	M1
	$\Rightarrow x =, y =$		
	$\mathcal{Q}:\left(\frac{12\cos\theta}{4\cos^2\theta+9\sin^2\theta},\ \frac{18\sin\theta}{4\cos^2\theta+9\sin^2\theta}\right)$		
	Correct coordinates. Allow as $x =, y =$ and allow equivalent correct expressions as		A 1
	long as they are single fractions		AI
	$12\cos\theta$ $18\sin\theta$	$12\cos\theta$ $18\sin\theta$	
	e.g. $x = \frac{1}{4+5\sin^2\theta}$ $y = \frac{1}{4+5\sin^2\theta}$	$x = \frac{1}{9 - 5\cos^2\theta} y = \frac{1}{9 - 5\cos^2\theta}$	
			(3)

(e)	Uses their coordin	ates of Q to attempt an	2.64
	At Q , $\frac{z}{x} = -\tan \theta$ equation connecting or uses the equation	ng x, y and θ or states on found in (d)	M1
	$x = \frac{12\cos\theta}{4\cos^2\theta + 9\sin^2\theta} = \frac{12\sec\theta}{4+9\tan^2\theta} \Rightarrow x^2 = \frac{144\sec^2\theta}{\left(4+9\tan^2\theta\right)^2} =$	$=\frac{144\left(1+\frac{4y^{2}}{9x^{2}}\right)}{\left(4+9\times\frac{4y^{2}}{9x^{2}}\right)^{2}}$	
	$y = \frac{18\sin\theta}{4\cos^2\theta + 9\sin^2\theta} = \frac{12\sec\theta\tan\theta}{4+9\tan^2\theta}$	2	d M1
	$\Rightarrow y^2 = \frac{324\sec^2\theta\tan^2\theta}{\left(4+9\tan^2\theta\right)^2} = \frac{324\left(1+\frac{y}{9x^2}\right)^2}{\left(4+9\times\frac{4y^2}{9x^2}\right)^2}$	2	
	Eliminates θ		
	Depends on the first mark. $x^2 \left(9x^2 + 4y^2\right) \implies \left(x^2 + x^2\right)^2 = 0x^2 + 4x^2$		
	$\Rightarrow x = \frac{1}{\left(x^2 + y^2\right)^2} \Rightarrow \left(x + y^2\right) = 9x + 4y$		
	or $\Rightarrow 9 \times 16x^2 y^2 \left(1 + \frac{y^2}{x^2}\right)^2 = 4 \times 18^2 \left(1 + \frac{4y^2}{9x^2}\right) \Rightarrow \left(x^2 + y^2\right)^2 = 9x^2 + 4y^2$ Correct equation or correct values for α and β		
			(3)
(e) Way 2	$x = \frac{12\cos\theta}{4+5\sin^2\theta} y = \frac{18\sin\theta}{4+5\sin^2\theta} \Longrightarrow \left(x^2 + y^2\right)^2 = \left(\frac{144\cos^2\theta}{(4+x^2)^2}\right)^2$	$\frac{\theta + 324\sin^2\theta}{5\sin^2\theta} \bigg)^2$	M1
	$\frac{1}{y} = \frac{1}{y} = \frac{1}$		
	$\left(\frac{144\cos^2\theta + 324\sin^2\theta}{\left(4+5\sin^2\theta\right)^2}\right)^2 = \left(\frac{144+180\sin^2\theta}{\left(4+5\sin^2\theta\right)^2}\right)^2 = \left(\frac{36\left(4+5\sin^2\theta\right)}{\left(4+5\sin^2\theta\right)^2}\right)^2 = \frac{1296}{\left(4+5\sin^2\theta\right)}$ $\frac{1296}{\left(4+5\sin^2\theta\right)^2} = \alpha x^2 + \beta y^2 = \alpha \frac{144\cos^2\theta}{\left(4+5\sin^2\theta\right)^2} + \beta \frac{324\sin^2\theta}{\left(4+5\sin^2\theta\right)^2} \Longrightarrow \alpha = \dots, \beta = \dots$ Substitutes into the given answer and solves for α and β Depends on the first mark.		
	$(x^{2} + y^{2})^{2} = 9x^{2} + 4y^{2}$ Correct expression $\alpha \text{ and } \beta.$	n or correct values for	A1
			Total 13

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom